
Scrabble

By: Davit, Victor, Jazli, Umair, Clark, Francisco, and Claire



Overview of Scrabble

Domain: Gaming Platform

Specification: Scrabble game imitation involving 2 players, data 
persistence, Java Swing UI, a score calculator, and validity checkers. 

Scrabble is a skill-based board game traditionally played using 
wooden pieces that involves creating words. The longer the word 
and the more complex the word, the more points players achieve. 

Repo: https://github.com/CSC207-2022F-UofT/course-project-scrabble 

https://github.com/CSC207-2022F-UofT/course-project-scrabble


Project Specifications

● Interactive game board and tiles 
○ Gameplay follows the rules of Scrabble (e.g. each player has 7 tiles , words must be 

formed in specific ways)

○ The UI should respond to a user’s inputs (e.g. when the user clicks on buttons, tiles)

● Automatically checks the correctness of placed words and calculates the score
○ Checks words against a dictionary

○ Scores words by adding the value of each tile and applying the correct multipliers



Clean 

Architecture 

Dependency 

Chart

Dependency Chart



Graphical User Interface

● UI consists of pages with interactions

● Each scrabble tile is represented by a 

button

● Know where each button is and which 

coordinate they relate to.



Graphical User Interface

Biggest challenge: 

coordinate for where tiles 

would be clicked while 

following Clean 

Architecture



Controller: ScrabbleGameController

● Works as an intermediary between the View 

and the Usecases

● Sits in the controller layer of clean 

architecture

● Follows MVP architecture



Challenges Faced

● Difficult to separate the functionality of the usecase from the 
controller and vice versa

● Breaking down large usecases into sub-usecases

● Leveraging interfaces to separate layers effectively

● Makes use of the facades provided by the usecases



Use Cases: Create Game

● User inputs names for Player 1 
and Player 2

● Within use case layer of Clean 
Architecture

● Then presses “Start Game”
● Initializes a brand new game 

state
● Design Pattern: Factory Method

Demonstration: Create Game



Data Gateways: Save Game and Load Game

Load GameSave Game

● User presses “Play Move” button

● Calls save game to save game state to file

● Design Pattern: Singleton

Demonstration: Save Game & Load Game

● User presses “Load Game” button

● Loading the same game state from file

● Design Pattern: Memento



Use Cases: Board Manager

Demonstration: Place Tile & Place Word 

Triggered when user places tiles/words on the 
board or recalls the tiles.

Updates the Game Board entity with the inputs 
received from the controller class.

Within the Use Case layer of Clean Architecture.

Implement smaller use case methods:
- Place Tile
- Place Word
- Reset Move



Design Patterns & SOLID

Demonstration: Reset Move

Design Pattern: Mediator 

SOLID:

● Single Responsibility is to update the board 

entity.

● Adheres to Open/Closed Principle.

● (ISP) No unnecessary Interface methods

● (DIP) Depends on Interfaces



Testing & Challenges Faced

Tests for methods:

● checkLetterTest

● checkWordTest

● resetMovesTest

Both Happy and Unhappy flow

Challenges:

● Adding new small use cases

● Unique conditions for smaller use cases

● Bugs with Reset Move use case 



Use Case: Tile Checker

Design Idea

● SOLID
○ Single responsibility is to validate a set of coordinates.

○ Since there aren't any subclasses, it adheres to the LSP by default.

○ Depend on Scrabble Dictionary.

● Tile Checker is part of the Use Case layer of clean architecture.

Validating a set of inputs (lists of coordinates) by checking for 
adjacency and generating a list of words that needs to be scored. 



Problem Faced

Corner cases:

● Tiles on the edge of the board

● Multiple words formed

● Using coordinates instead of words

Solution
● Added test cases

● Using helper functions



Use Cases: Scrabble Dictionary 

Functionality 

● Constructs a searchable list from 
a text file

● Determines the validity of 
entered words

● Locates words on the board using 
tile coordinates

Design

● SOLID: no interfaces or 
subclasses

● Clean Architecture: Use 
case

● Singleton Pattern

Challenges

● Static methods
● Multiple functions 
● File handling



Use Case: 
Draw Tile

● Triggered at end of turn

● Fills Player’s hand from 

bag

● Within use case layer of 

Clean Architecture



Design Principles

Design Pattern:

● Mediator

● Reduce 

Dependencies

SOLID:

● Single role to 

draw tiles

● Open-Close 

Principle

● Not dependant 

on other classes



Use Case: 
Scoring
System

● Triggered after valid move is 

played

● Scores move depending on 

positioning on board

● Within use case layer of Clean 

Architecture



Design Principles

Design Pattern

● Visitor

● Separate 

algorithm from 

object operated 

on

● Easier to adapt

SOLID

● Sole purpose to 

score valid moves

● Interfaces 

adequately split

● No dependency 

on other classes



Challenge Faced

Problem

● Discrete bugs within Draw Tile from 

inadequate testing

Solution

● Increased unhappy flow testing from 

milestone 4

● Resolved many errors throughout the 

program with better testing



Improvements/Future Work

● AI
● Multiple Players
● Online/Web Based 

Tournament




